Teknovation Logo
robot

 
  • Testemne under forsøg, hvor de to ender (yderst t.v.) langsomt trækkes i hver sin retning. Ved hjælp af Digital Image Correlation kan bevægelser måles optisk. Den vertikale bevægelse af testemnet er således vist med farvede konturlinjer. (Illustration: Simon Heide-Jørgensen)

19. februar 2020, kl. 07:03 

Mere holdbare mikrochips

Ved at lave specialdesignede indskæringer i plexiglas har danske forskere gjort materialet stærkere, lettere og mere fleksibelt. Den opnåede viden kan blandt andet benyttes til at gøre mikrochips langt mere holdbare.


Forskere fra Aarhus Universitet, AU, og Turner Research Group fra University of Pennsylvania, USA, har – udelukkende ved at lave små huller i et geometrisk mønster – ændret et materiales mekaniske egenskaber og blandt andet øget dets tolerance mod brud.

I forsøget har forskerne benyttet plexiglas som modelmateriale, og har tilføjet en række specialdesignede indskæringer og derved fjernet materiale. Plexiglas er normalt sprødt og glasagtigt og sårbart over for brud, men med teknikken bliver produktet lettere end det oprindelige, men samtidig også stærkere og mere robust.

Annonce - artiklen fortsætter under banneret


Via teknikken produceres et såkaldt mekanisk metamateriale, som betyder, at materialets egenskaber ændres udelukkende ved at ændre dets geometriske opbygning. Materialet får på denne måde primært egenskaber fra sin geometriske struktur frem for sin kemiske sammensætning.

Opdagelsen er beskrevet i det anerkendte tidsskrift Journal of the Mechanics and Physics of Solids.

”I projektet har vi testet en geometrisk form, ’Double Cantilever Beam’, som kan repræsentere en lang række produkter, blandt andet mikrochips. I produktionen af mikrochips har komponenten en tendens til at knække, fordi den er så lille og skrøbelig. Ved at introducere disse specialdesignede snit bliver komponenten mere fleksibel og mindre skrøbelig. Derudover kan vi via geometrien fordele spændingerne over et større område og mindske spændingssingulariteten, som er ansvarlig for dannelsen og væksten af revner,” siger postdoc Simon Heide-Jørgensen, som er forsker på projektet.

Forskerteamet har således introduceret en række laserudskårne snit i materialet og derved ændret materialets geometri omkring de forventede spændingssingulariteter. Derved kan man sørge for, at bruddet sker designmæssigt (eller efter behov) – altså følger de udskårne snit. Det øger komponentens modstand mod revnedannelse og brud betragteligt.

”I stedet for at koncentrere sig i en singularitet spreder spændingerne sig nu langs de snit, vi har lagt i materialet. Materialet kan klare en større belastning, inden der opstår brud. Når bruddet opstår, vil det vokse langs snittene, som bremser det og herved hæmmer yderligere revnevækst. Tilsammen får materialet en større tolerance i forhold til revnevækst og bliver langt mindre skrøbelig,” siger Simon Heide-Jørgensen.

Ud over at gøre materialet mere robust over for revner, giver de indlagte snit mere fleksibilitet i materialet, gør det lettere og sparer i princippet materialer.


  • Del denne artikel på Facebook
  • Del denne artikel på Twitter
  • Del denne artikel på LinkedIn

 

 
 
 
 
 
Teknovation
 
 
Teknovation ApS
Sydvestvej 110, 1
2600 Glostrup
T. 46139000
F. 46139021
M. info@teknovation.dk
CVR Nr. 28680392

 
Copyright © Teknovation ApS
All Rights Reserved.
CMS: Scalar Media

Persondata- og cookiepolitik